Main results of the Paper
\log canonical $\quad \exists \log$ canonical $\left(X^{0}, \Delta^{0}\right) \longrightarrow(X, \Delta)$

Won't talk about this or the other maun results. will jump straight to preliminaries

Existence of lc flips.

Recall some definitions
$\phi: x \cdots y$ y proper birational contraction
${ }^{U \prime} \longmapsto D^{\prime \prime}$ divisors
Defn: ϕ is D-non-positive (resp. D-negative) if

$W=$ common resoln.

- $p^{*} D=q^{*} D^{\prime}+E \quad E \geqslant 0$
- $p_{*} E \subseteq\{f$-exceptional divisors $\}$
(resp. $p_{*} E=\{$-exceptional divisors\})

Ex: $\quad K_{x}+\Delta$-non positive $=$ Discrep. decreases for some f-exc. divisors
$K_{x}+\Delta$-negative $=$ Discrep. decreases for all f-exc .divisors

Defn: $(x, \Delta) \xrightarrow{\phi}\left(X_{M}, \Delta_{M}\right)$ birational contraction (x, Δ) and $\left(X_{M}, \Delta_{M}\right)$ are both L_{c}

Say ϕ is a minimal model if:

- X_{M} is Q-factorial
- ϕ is $\left(K_{x}+\Delta\right)$-negative
- $K_{X_{M}}+\Delta_{M}$ is ref

Modifications

- Say ϕ is weak Lc model if $\left(K_{x}+\Delta\right)$-negative replaced with $\left(K_{x}+\Delta\right)$-non-positive
- Say ϕ is good minimal model if $K_{X_{M}}+\Delta_{M}$ is additionally semiample.

Lemma 2.2:

$$
\begin{aligned}
& x \rightarrow x^{\mu} \rightarrow x^{\prime} \quad \text { Vertical }=\text { Fibrations } \\
& h \nmid_{-\rightarrow y^{\prime}}^{h^{\prime}} \quad \text { Horizontal }=\text { Dir. contraction }
\end{aligned}
$$

D vertical divisor on X s.t. $D \sim h^{*} E$
[Everything is Q-Cartier]
If $\mu_{*} D \sim_{y^{\prime}} 0$, then $\mu_{*} D \sim h^{\prime *}\left(\eta_{*} E\right)$
Pf: First observe: if $\Gamma \sim h^{*}(B)$ with Γ vertical divisor on X, then $\exists B^{\prime}$ st.:

$$
\Gamma=h^{*}\left(B^{\prime}\right)
$$

Pf: $\Gamma-h^{*}(B)=\operatorname{div}(g)$ for g rat'l fr. on X g doesn't vanish / have poles on gen. fiber $\therefore g=h^{*}\left(g^{\prime}\right)$ for g^{\prime} rat'। fr. on y Thus $\Gamma=h^{*}\left(B+\operatorname{div}\left(g^{\prime}\right)\right)$

So, replace E to assume $D=h^{*} E$.
Set $F:=\underbrace{\mu_{*} D-h^{\prime *}\left(\eta_{*} E\right)} \sim y^{\prime} O$
differ over points of y^{\prime} where η^{-1} is not defined
\therefore Image of F in Y is of codim $\geqslant 2$
By pres. page, can get:

$$
\begin{aligned}
& F=h^{\prime *}(E) \\
\rightarrow \therefore F & =0
\end{aligned}
$$

Minimal Models
I will frequently skip writing/saying over U

$$
\begin{aligned}
& \text { Thm } 2.3 \text { [BCHM's MMP] } \\
& x \rightarrow U \text { projective morphism } \\
& (x, \Delta) d(t \\
& s=\lfloor\Delta\rfloor \text { non } K l t \text { locus }
\end{aligned}
$$

If (1) Δ big, no strata of S contained in $B_{f}(\Delta / v)$

(3) $K_{x}+\Delta$ not pseudoeffective.

Then $\left(K_{x}+\Delta\right)$-MMP (with scaling) terminates with

- A good min model

$$
O R
$$

- Mori Fiber space
$\underset{(X, \Delta) d l t}{\text { Lemma } 2 \cdot 4}$ [Comparing two min. models]

$$
\begin{aligned}
& \phi_{M} \rightarrow X_{M} \\
& \therefore \phi_{1} \text { two min models } \\
& \hdashline X_{M}^{\prime} \quad \text { for }(X, \Delta)
\end{aligned}
$$

(1) $\{\phi-E \times c$. divisors $\}=\left\{\right.$ Divisors in $\left.B_{-}\left(K_{x}+\Delta\right)\right\}$

If $\phi=$ good min model
$\rightarrow=$ Divisors in $\left.B\left(K_{x}+\Delta\right)\right\}$
(2) $x_{M}^{\prime} \cdots x_{M}$ isom in codim I

Both have same discrepancies

$$
a_{E}\left(x_{M}^{\prime}, \Delta_{M}^{\prime}\right)=a_{E}\left(x_{M}, \Delta_{M}\right) \quad E \text { divisor on } X
$$

(3) ϕ good min. model $\Leftrightarrow \phi^{\prime}$ good min. model

Pf: Skip (1) [Use Nakayama-Zariski dec.]
(2) ϕ-exc. divisors $=\phi^{\prime}$-exc. divisors
\therefore Divisors on $X_{M}=$ Divisors on X_{M}^{\prime}
$\therefore X_{M}^{\prime} \cdots X_{M}$ iso in codim 1
Claim: Discrep of $\left(X_{M}^{\prime}, \Delta_{M}^{\prime}\right)$ and $\left(X_{M}, \Delta_{M}\right)$ are same Pf:

$$
p^{*}\left(K_{x_{M}^{\prime}}+\Delta_{M}^{\prime}\right)+\sum a_{E}\left(x_{M}^{\prime}, \Delta_{M}^{\prime}\right) E
$$

$$
K_{w}
$$

$$
q^{*}\left(K_{x_{M}}+\Delta_{M}\right)+\sum a_{E}\left(x_{M}, \Delta_{M}\right) E
$$

$$
D:=\underbrace{p^{*}\left(K_{x_{m}^{\prime}}+\Delta_{m}^{\prime}\right)}_{p-\text { trivial }}-\underbrace{q^{*}\left(K_{x_{m}}+\Delta_{M}\right)}_{\text {net }[\text { it is pullback of net }]} \text { is -p-nef }
$$

$P_{*}(D)=0$. Negativity lemma $\Rightarrow D$ effective Similarly - D effective. $\therefore D=0$
i.e. $p^{*}\left(K_{x_{M}^{\prime}}+\Delta_{M}^{\prime}\right)=q^{*}\left(K_{x_{M}}+\Delta_{M}\right)$
\Rightarrow Discrep are same.
One of them semiamp \Leftrightarrow Other is semi amp $\therefore \phi$ good min. model $\Leftrightarrow \phi^{\prime}$ good min. model

Lemma 2.5 [Partial converse to previous] $(x, \Delta) d(t$
$\phi: x \rightarrow X^{\prime}$ birational contraction st.

- $K_{x^{\prime}}+\Delta^{\prime}$ is net
- $\{\phi$-Exc divisors $\}=\left\{\right.$ Divisors in $\left.B\left(K_{x}+\Delta\right)\right\}$

Additionally say \exists good min. model $\psi: x \ldots X_{M}$ Then ϕ is a min. model.

Pf: WTS: ϕ is $K_{x}+\Delta$-negative
$\psi: x \rightarrow x_{M}$ good min. model. Lemma $2 \cdot 4 \Rightarrow$

$$
\{\Psi-E x c \text { divisors }\}=\left\{\text { Divisors in } B\left(K_{x}+\Delta\right)\right\}
$$

$\therefore x^{\prime} \cdots x_{m}$ is iso in codim 1
$\therefore\left(X^{\prime}, \Delta^{\prime}\right)$ and $\left(X_{M}, \Delta_{M}\right)$ have same discrep.
\therefore Since $\quad X \rightarrow X_{M}$ is $K_{X}+\Delta$-negative $x \cdots x^{\prime}$ is also $K_{x}+\Delta$-negative

Lemma 2.6 [Openness of good minimal models] (x, Δ) and $\left(x^{\prime}, \Delta^{\prime}\right)$ st.
$\left(x, \Delta_{t}:=(1-t) \Delta+t \Delta^{\prime}\right)$ is dIt $0 \leq t<1$
$K_{x}+\Delta$ semiample \rightarrow Get morphism

$$
g: x \longrightarrow z
$$

If $\left(x, \Delta^{\prime}\right)$ admits good min. model $h: x \ldots x_{m}$ over Z, then h is a min. model for $\left(x, \Delta_{t}\right)$ for small t.

Proof: WTS: (1) h is $k_{x}+\Delta_{t}$-negative
(2) $K_{x_{M}}+\Delta_{t, M}$ is nef
(1) h is $K_{x}+\Delta^{\prime}$-negative by def.
h is $k_{x}+\Delta$ trivial $\quad x \ldots x_{m}$

$$
k_{x}+(1-t) \Delta+t \Delta^{\prime}=\underbrace{(1-t)\left(K_{x}+\Delta\right)}_{\text {trivial }}+\underbrace{t\left(K_{x}+\Delta^{\prime}\right)}_{\text {negative }}
$$

$\therefore h$ is $k_{x}+\Delta_{t}$-negative.
(2) Let $K_{x}+\Delta \sim g^{*} H, H$ ample on Z

Set $m:=$ Positive integer s.t. $m H$ Cartier
Assume $K_{x_{M}}+\Delta_{t, M}$ not ref
Say curve $\Sigma \cdot\left(-{ }^{\prime \prime}-\right)<0$
As $K_{x_{M}}+\Delta_{M}$ is nef, $K_{x_{m}}+\Delta_{M}^{\prime}$ must also intersect Σ negatively. Can also assume:

$$
0<-\left(k_{x_{m}}+\Delta_{m}^{\prime}\right) \cdot \varepsilon<2 \operatorname{dim}(x)
$$

Now:

$$
\begin{aligned}
& 0>\left(K_{x_{m}}+\Delta_{t, M}\right) \cdot \Sigma \\
& =t\left(K_{x_{M}}+\Delta_{m}^{\prime}\right) \cdot \Sigma+(1-t)\left(K_{x_{m}}+\Delta_{m}\right) \cdot \Sigma \\
& \geqslant-t \cdot 2 \operatorname{dim}(X)+(1-t) \underbrace{H \cdot g_{*} \varepsilon}_{>\frac{1}{m}} \begin{array}{c}
\text { Remember } g_{*} \Sigma \\
\text { non-zero as } \\
K_{x_{m}}+\Delta_{m}^{\prime} \text { is } \\
\text { net over } z
\end{array}]
\end{aligned}
$$

$>O$ (if t is sufficiently small)

Lemma 2.7 [Restatement of MMP with scaling of A terminates]

$$
(X, \Delta) \quad d(t
$$

$A=$ ample divisor on X
TFAE:
(1) $R\left(x ; K_{x}+\Delta, K_{x}+\Delta+A\right)$ is fin. generated Ring generated by global sections of $K_{x}+\Delta$ and global sections of $K_{x}+\Delta+A$.
(2) $\left(K_{x}+\Delta\right)-M M P$ with scaling of A terminates and (x, Δ) has a good minimal model.
Pf: Skip

Cor 2.9 [MMP with scaling of A terminates for a dIt pair if 3 good min model]
(x, Δ) d lt, Q - factorial
If 7 good min. model of (X, Δ), then:
Any $\left(K_{x}+\Delta\right)-$ MMP with scaling of A terminates
Pf: Skip
[Part of the proof same as Proof of Lemma 2.11 below]

Lemma 2.10 [Having good min. models preserved under birational morphism]
$(x, \Delta) d l t$
$\mu: x^{\prime} \rightarrow x$ proj. birational morphism
Write $K_{x^{\prime}}+\Delta^{\prime}=\mu^{*}\left(k_{x}+\Delta\right)+F$
[where Δ^{\prime}, F effective with no common comp.]
(x, Δ) has good min. model \Longleftrightarrow
$\left(x^{\prime}, \Delta^{\prime}\right)$ has good min model
Proof: Will show (\Rightarrow)
Suppose (x, Δ) has good min. model $\phi: x \ldots X_{M}$ Let $\mathcal{E} \subseteq x^{\prime}$ defined as:

$$
\varepsilon=\left\{\mu-\text { exc. } \operatorname{div} E \text { set. } a_{E}(x, \Delta) \leq 0\right.
$$

and center of E not in $\left.B\left(K_{x}+\Delta\right)\right\}$
These hypotheses on ε implies we can extract \mathcal{E} ie. by $B C H M 1.4 .3$, $\exists X_{M}^{\prime}$ st.:

with Exc-div of $M_{M}=\varepsilon$
Observe that no component of F is in \mathcal{E} as $a_{F_{i}}(x, \Delta)>0$. for every $F_{i} \subseteq F$
So, ϕ^{\prime} has to contract F [as composition contracts F but μ_{M} doesn't]
Claim: $X^{\prime}, \phi_{-}^{\prime} \rightarrow X_{m}^{\prime}$ is a good min. model for $\left(x^{\prime}, \Delta^{\prime}\right)$.
Proof: (1) $K_{x_{M}}^{\prime}+\Delta_{M}^{\prime}$ is semiample:

$$
\begin{aligned}
K_{x_{M}}^{\prime}+\Delta_{M}^{\prime} & =\phi_{*}^{\prime}\left(K_{x}+\Delta^{\prime}\right) \\
& =\phi_{*}^{\prime}\left(\mu^{*}\left(K_{x}+\Delta\right)+F\right) \\
& =\phi_{*}^{\prime}\left(\mu^{*}\left(K_{x}+\Delta\right)\right)+\underbrace{\phi_{*}^{\prime}(F)}_{=0} \\
& =\mu_{M}^{\prime *}\left(\phi_{*}\left(K_{x}+\Delta\right)\right) \quad[\text { Lemma } 2 \cdot 2] \\
& =\mu_{M}^{\prime *}(\underbrace{K_{x_{m}}+\Delta_{M}}_{\text {semiample }})
\end{aligned}
$$

(2) ϕ^{\prime} will be $k_{x^{\prime}}+\Delta^{\prime}$-negative by choice of ε.

Lemma 2.11
$(x, \Delta) d(t$
$X \ldots X_{M}$ good min. model for (X, Δ)
If $\Psi: X \ldots, Y:=\operatorname{Proj}\left(R\left(K_{x}+\Delta\right)\right)$ is a morphism then:

There exists a good min. model for (x, Δ) over Y.
Pf: Take common resolution:

$$
\mu{\underset{x}{\downarrow} \underbrace{v}_{--\phi_{-} \rightarrow x_{M}} x_{M}}^{x^{\prime}}
$$

Suffices to show that $\left(x^{\prime}, \Delta^{\prime}\right)$ has good min. model over Y (by Lemma 2.10)

$$
K_{x^{\prime}}+\Delta^{\prime}=\mu^{*}\left(K_{x}+\Delta\right)+F
$$

Also as ϕ is $K_{x}+\Delta$-negative

$$
\begin{aligned}
& \mu^{*}\left(K_{x}+\Delta\right)=v^{*}\left(K_{x_{m}}+\Delta_{m}\right)+E \\
& K_{x^{\prime}}+\Delta^{\prime}=v^{*}\left(K_{x_{m}}+\Delta_{m}\right)+E+F
\end{aligned}
$$

Claim: (1) $E, F \subseteq B_{-}\left(K_{x^{\prime}}+\Delta / x_{m}^{\prime}\right)=\underset{A \text { ample }}{ } B\left(K_{x^{\prime}}+\Delta^{\prime}+A / X_{M}\right)$
"Diminished base locus"
(2) Run a $K_{x^{\prime}}+\Delta^{\prime}$-MMP over X_{M} with scaling to get $\phi^{\prime}: x^{\prime} \ldots x_{M}^{\prime}$
Then everything in the diminished base locus is contracted.
In particular, $\phi_{*}^{\prime}(E+F)=0$

$$
\therefore K_{x_{m}^{\prime}}+\Delta_{m}^{\prime}=\phi_{*}^{\prime}\left(K_{x^{\prime}}+\Delta^{\prime}\right)
$$

Same as in the proof ${ }^{6}=\mu_{M}^{\prime}{ }^{*}(\underbrace{\left(k_{x_{M}}+\Delta_{M}\right)}_{\text {semianple }}$
of Lemma 2.10
$\therefore\left(x_{m}^{\prime}, \Delta_{m}^{\prime}\right)$ good min. model of $\left(x^{\prime}, \Delta^{\prime}\right)$

Claim follows from this lemma
Lemma: Let $p: x \longrightarrow y$ birational morphism
(1) $B_{-}\left(p^{*} D+E / y\right) \supseteq E$ for E exceptional
(2) $K_{x}+\Delta_{x}-M M P$ over Y with scaling contracts divisors in $B_{-}\left(K_{x}+\Delta_{x / y}\right)$

Pf: (1) We'll prove E lies in the base locus of $P^{*} D+E$
Say $P^{*} D+E \sim \sim_{y} F \geqslant 0$

$$
\begin{gathered}
\Rightarrow E \sim_{y} F \geqslant 0 \\
\quad \Rightarrow 0 \sim_{y} F-E \\
\therefore F-E \text { is }-P \text {-net and } p_{*}(F-E) \\
\quad=P_{*} F \geqslant 0 \\
\therefore \text { Negativity lemma } \Rightarrow(F-E) \geqslant 0
\end{gathered}
$$

$$
\text { i.e. } E \subseteq F
$$

(2) Say $\left(K_{x}+\Delta\right)$-MMP over y yields $\left(X_{M}, \Delta_{m}\right)$

Assume for sake of contradiction that some $E \subseteq B_{-}$is not contracted in X_{M}.
Say $E \subseteq B\left(K_{x}+\Delta+\frac{A}{y}\right)$ for some ample divisor A over Y
Pushforward to get $K_{x_{M}}+\Delta_{M}+A_{M}$ ample over complement of cod $m \geqslant 2$
$\therefore K_{x_{M}}+\Delta_{M}+A_{M}$ doesn't contain image (E) in its base locus as by assumption image (E) has codim I.
$\therefore \exists$ section s of $K_{x_{m}}+\Delta_{m}+A_{m}$ which doesn't vanish along image (E)
Now the pullback of S will give a section of $K_{x}+\Delta+A$ which doesn't vanish along E. Remember that by assumption $x \cdots x_{m}$ is isom about E as E is not contracted. So, the pullback of $K_{X_{M}}+\Delta_{M}+A_{M}$ and $K_{x}+\Delta+A$ agree about E]

Theorem 2.12 [Finite gen. of canonical ring + Very genera al fiber has min model $\Rightarrow(X, \Delta)$ dIt has min model]

$$
\begin{aligned}
& x \rightarrow U \\
& (x, \Delta) d l t
\end{aligned}
$$

If (1) For very general $u \in U,\left(X_{u}, \Delta_{u}\right)$ has a good min. model
(2) $R\left(x / v ; K_{x}+\Delta\right)$ is finitely generated

Then (x, Δ) has a good min. model over U Proof: Skip.

Cor 2.13 :

$$
\begin{aligned}
& \left(z, \Delta_{z}\right) \\
& \int_{(y, \theta)} h=\text { fibration st. } h^{*}\left(k_{y}+\theta\right) \sim k_{z}+\Delta_{z} \\
& (y, \theta)
\end{aligned}
$$

Let $\eta: y \cdots y^{\prime}$ be a $K_{y}+\theta$ flip or a divisorial contraction.

Then \exists birational contraction:

$$
\begin{aligned}
& \begin{array}{l}
\left(z, \Delta_{z}\right)-\lambda^{\mu} \rightarrow \\
\\
\left.\left.h\right|^{\prime}, \Delta_{z^{\prime}}\right) \\
\quad \int^{\prime} \text { st. } h^{\prime *}\left(k_{y^{\prime}}+\theta^{\prime}\right)=k_{z^{\prime}}+\Delta_{z^{\prime}} \\
(y, \theta)-\eta \rightarrow\left(y^{\prime}, \theta^{\prime}\right)
\end{array}
\end{aligned}
$$

Pf: Once we prove $\exists Z^{\prime}$ and \exists map h^{\prime}, then by Lemma 2.2, we have:

$$
h^{\prime *}\left(K_{y^{\prime}}+\theta^{\prime}\right)=K_{z^{\prime}}+\Delta_{z^{\prime}}
$$

So, we just have to show $\exists z^{\prime} \xrightarrow{h} y^{\prime}$ Well do the case $\eta=$ flip

Observe (1) $R\left(z / w, k_{z}+\Delta_{z}\right)=R\left(y / w, k_{y}+\theta\right)$ since] $Z \rightarrow Y$ is a fibration So this is fin. gen.
(2) A general fiber of $Z \rightarrow W$ is also a general fiber of $z \rightarrow y$
$\therefore\left(z_{t}, \Delta_{z_{t}}\right)$ has a good min model as $k_{z_{t}}+\Delta_{z_{t}} \sim 0$

So by Lemma $2.12,\left(z, \Delta_{z}\right)$ has a good min. model z^{\prime} over W and it maps to $\operatorname{Proj}\left(R\left(z_{w}^{\prime}, k_{z^{\prime}}+\Delta_{z}\right)\right)$ Observe $\operatorname{Proj}\left(R\left(z_{w}^{\prime}, k_{z^{\prime}}+\Delta_{z^{\prime}}\right)\right.$

$$
\begin{aligned}
& =\operatorname{Proj}\left(R\left(z / w, k_{z}+\Delta_{z}\right)\right. \\
& =\operatorname{Proj}\left(R\left(y / w, k_{y}+\theta\right)\right) \\
& =y^{\prime}
\end{aligned}
$$

